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Supplementary Text 

 

The supplementary method text is split into two main parts: the first part deals with the 

mathematical details of the characteristic direction approach, and the second deals with the 

details of the validation. 

 

 

 



 

Detailed Mathematical derivation of the characteristic direction 

 

Suppose we have gene expression data from a number of samples  , in which the expression of 

  genes is measured, and then let each microarray profile form a row of the matrix   (an     

matrix). For generality at this point we shall consider the case where each of the microarray 

samples comes from one of   classes belonging to the set  .  

Let       be the class-conditional density of  , where   refers to a particular instance of the 

values in a gene expression profile, and let    be the prior probability of class  . Bays rule 

provides an expression for the class posteriors       , 
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In many circumstances it is reasonable to model the class-conditional density as a multivariate 

Gaussian, with mean   , and covariance   ,      

 

              
 

    
 
     

 
 

  
 

 
         

        
 

In linear discriminant analysis the assumption that the covariance matrix is the same for each 

class,         , is made. The log-ratios of two class posteriors then provides a measure of the 

relative likelihood of classifying to those classes; so the log ratio of classifying to classes   and   
is given by, 

 

   
           

           
    

     

     
    

  

  
 

    
  

  
 

 

 
       

            

              
 

This equation is linear in  , so the decision boundary between two classes is a hyper-plane, the 

orientation of which is defined by the normal vector, 
 

             
 

We interpret this orientation to infer the properties of the differential expression. 

The terms in the above expression for   are estimated from the data as follows: 
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Where    is a row from the data matrix  , and    is the class of the expression profile in row  . 
 

 

 

 



The dimensionality problem 

 

When    , as is the case for genome-wide expression profiling, the     covariance matrix 

has a rank at most equal to  , and therefore is singular. The calculation of the orientation vector 

  involves the inversion of this singular matrix. Regularization can be used to deal with this issue 

[1, 2]. Linear discriminant analysis can be regularized by shrinking the covariance matrix to the 

scalar variance    ,  
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where    is the     identity matrix. Note a value of     gives the original covariance  

estimate, a value of     results in a diagonal covariance estimate with each variance value 

being shrunk towards the scalar variance    , and intermediate values of   result in a mixture of 

the two. The inclusion of a constant on the diagonal is one way of resolving the singularity of the 

covariance matrix, and this type of regularization has been show to lead to more stable 

predictions. 

 

 

Computational short-cut when     

 

To calculate the orientation vector   we must invert the (shrunken) covariance matrix which has 

dimensions    . For genome-wide expression profiling the number of features may be 

extremely large and so the dimensions of the covariance matrix can be huge. However, when 

    there is a computational shortcut which can be used [3] Because   points in a  -

dimensional space span a subspace which has dimension at most    , it can be shown [1] that 

models (which do not use non-quadratic regularizing penalty terms) which are fit in this 

relatively low-dimensional subspace are equivalent to the same model fit in the full space. 

Models to which this theorem applies include linear discriminant analysis. Computing the model 

in the subspaced spanned by the data confers a large computational saving when    . 

Stated more explicitly: we can represent the data matrix in its singular-value decomposition, 
 

       

     
 

Where   is an     orthogonal matrix,   is a rectangular     diagonal matrix with diagonal 

elements              , which are termed the singular values, and   is a     

orthogonal matrix.   is an     matrix of which the first         column are non-zero 

vectors. The theorem states that when fitting a model of this data the  -vectors    can be 

replaced by the  -vectors   , which are the rows of  , and the resulting coefficients will be the 

same after transformation by  . The normal vector to the separating hyper-plane is given by 

equation (equation for b), we first use the shrunken covariance matrix to rewrite it as, 
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We use,   
 

 
     in (equation for shrunken covariance matrix), to express the invers of the 

covariance matrix as: 
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Then we use the singular value decomposition in equation to express this as: 
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and with a little manipulation this becomes: 
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In order to gain further computational savings we notice that the above decomposition is 

equivalent to the principal component decomposition, where the columns of   are the principal 

component directions (sometimes referred to as loadings) and   is the matrix of scores. We take 

advantage of an efficient iterative algorithm for computing the principal component directions 

and scores which is called the Non-linear iterative partial least squares (NIPALS) algorithm. A 

brief description of the NIPALS algorithm is given in the following subsection. 

 

We note that a truncated version of the scores and loading matrices,    and    can be used to 

decompose the data matrix to arbitrary accuracy. To avoid numerical issues arising from small 

singular values we truncate the principal components to a number,     , such that, 
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where     such that the great majority of the variance in the data matrix is preserved in the 

decomposition.  After truncation the dimensions of the matrices change as follows, 
 

                    

                    
 

where       . Then we us the truncated scores and loadings in equation (equation for invers 

sigma above) to finally write: 
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And we see that we do not need to invert the very large     matrix directly but we only need 

invert an           matrix. Our final calculating for the orientation of the hyper-plane after 

regularization is then: 
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This can be calculated very efficiently using the NIPLAS algorithm to calculate    and   , with 

the number of operations reduced by this singular value decomposition trick from       to 

       which is a significant saving when   is large and    , as is the case in genome-wide 

profiling. 



 

More information on the singular value decomposition trick can be found in [1] and [2]. More 

information on Regularized linear discriminant analysis can be found in [1, 2] [4] 

 

The Non-linear Iterative Partial Least Squares (NIPALS) algorithm [5] 

 

The algorithm begins by mean-centering the data matrix   and variables are initialized by setting 

the matrix       , and the vector   equal to a random column of  . At the end of each iterative 

cycle (described in pseudo-code below) the vectors   and   will become individual scores and 

loadings. A parameter,  , which is used in the test of convergence of the iterative procedure, is 

set to a small value (typically      ). Finally the following steps are iterated through, and the 

process repeated for     up to the number of principal components to be calculated. The 

algorithm then runs through the following steps: 

 

1) Project the data matrix   onto the vector,  , to obtain : 

  
      

  

   
 

2) Normalize the loading vector: 

  
 

   
  

3) Project   onto   to and set: 

  
       

   
 

4) Test convergence. If the difference between the eigenvalues          and      from 

the previous iteration is larger than       then return to step 1 

5) Remove the estimated principal component from       : 

                  

Interpretation of the orientation of the separating hyper-plane 

 

The  -vector   which is the normal to the separating hyper-plane is here interpreted as 

characterizing the differential expression. The normalized vector  ̂ contains only information 

about the direction of the normal to the separating hyper-plane. The components of  ̂ are the 

direction cosines, and their magnitude quantifies the degree of alignment of the direction normal 

to the separating hyper-plane to axes corresponding to each gene evaluated in the expression 

profile. The sign of each component can be interpreted as the sign of the contribution of each 

gene to the differential expression. Another way to picture this interpretation of gene significance 

is to consider the identity, 

∑ ̂ 
 

 

   

   



Then the contribution of each  ̂ 
  to this sum can be interpreted as quantifying the relative 

significance of the corresponding gene. 

Calculation of the principal angle 

 

We use a form of the algorithm described in [6] to calculate the single principal angle between a 

line, which has a direction parallel to the characteristic direction  ̂, and a subspace C defined by 

a gene set as the space spanned by each gene in the set.  

The QR decomposition can be used to calculate orthonormal bases for each subspace, 
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where     
    , and     

     where    is the number of genes in the gene set. We then 

calculate the following singular-value decomposition, 
 

              
     

 

Because one of our subspaces has dimension of unity there is only one non-zero value in  , 

which we call  , and this is related to the single principal angle by: 
 

             
 

This angle, which measures the alignment of the direction  ̂ with the subspace C defined by pre-

defined gene set, is taken as a quantification of the enrichment of the gene set. 

 

Calculation of the null-distribution of principal angles  

 

We calculate an analytical expression which provides the null-distribution of the first principal 

angle between a line and an n-dimensional subspace. This is used to generate a p-value for the 

enrichment of gene sets. The null hypothesis is that the gene set is not enriched, and the angle 

between the corresponding subspace and the direction characterizing the differential expression 

is corresponds to an isotropic distribution. Therefore, we begin by calculating the distribution of 

the angles between a pair of isotropic directions. The surface area of an n-sphere is given by: 
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The probability distribution of the angle between two isotropic directions in an n-dimensional 

space is given by the ratio: 

 

 

       
    (      )

       

   
 

 
 (

 

 
)

 (
   

 
)
         

  (12) 

 

This can be generalized to find the probability distribution for the principal angle between a line 

and an  -dimensional subspace, 
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This can be integrated to give the cumulative distribution function: 
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Where     is the generalized hypergeometric function. This can be used to calculate the p value. 

 

Validation methods 

 

Collecting relevant datasets from GEO 

 

Expression data was extracted from GEO GDS SOFT files (http://www.ncbi.nlm.nih.gov/gds/). 

The dataset value type is indicated in the file by the variable “!dataset_value_type”. The two 

types we encounter are “count” and “transformed count”. There is a small number of cases from 

both types which have negative expression values. We interpret these as having already being 

Log transformed and leave them unchanged. The “count” data types are log transformed, and the 

“transformed count” data types are left as they are, in this way we ensure that all the data we use 

are log transformed. We applied an exhaustive search for drug and transcription factor 

perturbation experiments without any consideration of the outcome.   

 

Independence of the ChIP and ENCODE validation data sets 

 

We compared the GMT lines from ChEA and ENCODE gene-set libraries we previously 

developed for the software Enrichr [3] by calculating the Jaccard distance between pairs of lines. 

A small number of lines were found to be identical, and these were removed from ChEA such 

that the two datasets constitute independent validations. 

 



Univariate differential expression methods for comparison 

Here we provide details of the methods used for finding DEG to which we compare our 

approach. 

 

Welch t test 

The Welsh t-test is a commonly used univariate approach to identify differentially expressed 

genes.  The test is applied to each gene,  , independently, with sample means      (which is equal 

to the     element of the class mean   ), and sample variance     
  (which is equal to the     

diagonal element of   ), and class sample sizes   , the test statistic for the difference between 

classes   and   is given by: 
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With the degrees of freedom given by, 
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The p-value is then derived from the cumulative distribution function of the Student t distribution 

and p-values are commonly corrected for multiple hypotheses testing with the Benjamini-

Hochberg test, resulting in equivalent q-values. We rank the genes by their significance. 

Fold change 

It is widely known that the fold-change is an insufficient statistic for the evaluation of 

differential expression [7, 8], however it is still commonly used and we include it here for 

comparison. This is a univariate characterization of differential expression, and for each gene,  , 
the log ratio of the class mean expression is calculated, 
 

                       

 

The genes are then ranked by the magnitude,     , such that those genes which show the largest 

fractional change of mean value are regarded as the most significant according to this approach. 

Significance Analysis of Microarrays (SAM) 

Tusher et. al. in [9] describe the significance analysis of microarrays (SAM), which is a method 

for identifying genes on a microarray which show statistically significant changes in their 

expression (differentially expressed genes), essentially by assimilating a set of gene-specific t 

tests. This is another univariate approach to which we compare our method.  We used the author 

provided R package to perform SAM analysis. 



 

Limma 

 

The authors of [10] detail the Limma method of differential expression analysis, which applies a 

linear model to the expression of each gene. We use the author provided R package to perform 

the Limma analysis. 

 

Analysis of the ranking data 

Each experiment consists of microarray profiles (after processing) from two classes, one is a 

control set and one is a set of samples after perturbation. We use these processed expression 

values in analysis of the differential expression with four different approaches (characteristic 

direction, Wech’s t test, SAM, and fold change) to rank the genes by their significance. We then 

take lists of genes which may be expected to be significant for the perturbation and examine their 

positions in the ranked lists of all genes in each expression profile. 

 

We took two approaches to examining and displaying the distributions of these rankings; the 

cumulative distribution function over all experiments, and the distribution of area under the 

curve (AUC) from each experiment. Here we describe these analyses in more detail. 

 Expression data from each experiment   , with a total number of genes   , is analyzed for 

differential expression (according to one of the methods described above) resulting in rankings 

for each gene which are scaled by    to give    , such that a value of         is taken by the most 

significant gene in experiment    and       is taken by the least significant gene. For each 

experiment we have a corresponding subset of genes    (which may consist of genes associated 

with binding sites of the transcription factor knocked down in the experiment for example) 

whose rankings we wish to examine. The set of ranking of the genes     corresponding to 

experiment    are identified for all  , 

  ⋃    
      

 

Then the cumulative distribution function of  , which we label     , is examined. If the gene 

sets    contain genes which are neither preferentially significant or insignificant then we expect a 

uniform distribution and 

       
Any significant deviation from this indicates that the gene sets are significant in the differential 

expression analysis, therefore we examine        for significant deviations from zero in order 

to evaluate the various methods. A significant positive value corresponds to the genes in    being 

concentrated at the smaller scaled ranks and therefore greater significance than a uniform 

random distribution. 

Random fluctuations from zero are to be expected and we can estimate the scale for these 

fluctuations,  , by a premise similar to that behind the Kolmogorov-Smirnov test. If we 

hypothesis that,  , data points are drawn from a uniform distribution over        , then we 

expect the resulting difference between the cumulative distribution function and   to be like a 

random walk fixed at zero at the points     and    . We estimate the appropriate scale for 

the fluctuations by calculating the standard deviation of the deviation from 0 at the midpoint of 

the walk. At the midpoint of the walk, when     steps have been taken, we have taken    up-



steps and     down steps, and we have a displacement of  , then the following pair of equations 

hold: 

      
 

 
 

        
Taking the sum of these two equations, 

    
 

 
   

and we see that    and   are linearly related. If we calculate the standard deviation for    then 

we can use this linear relation to calculate the standard deviation of  .    is distributed as a 

Hypergeometric distribution with a draw size of    , a number of successes equal to    , and a 

total of  , which has a variance of, 
 

  

 

   
 

In cases where     we shall approximate this with     . The standard deviation of    is then 

given by: 

√
 

  
 

Then because of the above linear relation between   and   we need only double this to obtain 

the variance of the mid-point displacement from zero: 
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Finally, given that the step size in the cumulative distribution is    , the scale for fluctuations is, 

  √
 

  
 

When plotting        we also include a right-hand scale to the plots which have the values 

scaled by   to give an impression of how the deviation compares to what might be expected 

from random fluctuations under the null hypothesis of a uniform distribution of rankings. 

  

 

 

 
 

 

 

 

 

  



Supplementary Tables 

 GEO ID TF Perturbation 

Type 

TF 

present 

on 

array 

Interacting 

genes 

present on 

arrray 

TF 

present 

in 

ChEA 

TF 

present 

in 

Encode 
1 GDS1245 GATA1 KD 1 1 1 1 
2 GDS1733 HSF1 KD 1 1 1 1 
3 GDS1824 NANOG KD 1 0 1 1 
4 GDS1824 POU5F1 KD 1 1 1 1 
5 GDS1942 KLF4 OE 1 1 1 0 
6 GDS2069 KLF7 KO 1 1 0 0 
7 GDS2088 TP63 KD 1 1 1 0 
8 GDS2193 SOX4 KD 1 1 0 0 
9 GDS2359 IRF6 KD 1 0 0 0 
10 GDS2411 SPI1 KD 0 1 1 0 
11 GDS2526 MYC KD 1 1 1 0 
12 GDS2629 GRHL3 KO 1 1 0 0 
13 GDS2703 KLF9 KO 1 1 0 0 
14 GDS2724 BMI1 KD 1 1 1 0 
15 GDS2724 PCGF2 KD 1 1 0 0 
16 GDS2747 WT1 KO 1 1 1 0 
17 GDS2761 HIF1A KD 1 1 1 0 
18 GDS2761 HIF2A KD 0 0 0 0 
19 GDS2789 LMO4 DN 1 1 0 0 
20 GDS2817 GLIS2 KO/VR 1 0 0 0 
21 GDS3000 NEUROD1 KO 1 1 0 0 
22 GDS3010 PLAGL2 KO 1 0 0 0 
23 GDS3058 SP3 KO 1 1 0 0 
24 GDS3106 STAT3 KD 1 1 1 1 
25 GDS3171 TFAP2C VR 1 1 1 0 
26 GDS3173 EMX2 KO 1 0 0 0 
27 GDS3178 BCL11B KO 1 1 1 0 
28 GDS3320 LMX1B KO 1 0 0 0 
29 GDS3385 STAT5B KO 1 1 0 0 
30 GDS3406 NFE2L2 KO 1 1 1 0 
31 GDS3446 STAT3 OE 1 1 1 1 
32 GDS3486 GATA4 KO 1 1 1 0 
33 GDS3487 CREB1 KD 1 1 1 1 
34 GDS3577 CBFB KD 1 1 0 0 
35 GDS3578 CTNNB1 KD 1 1 1 0 
36 GDS3607 EGR1 KO 1 1 1 1 
37 GDS3622 NFE2L2 KO 1 1 1 0 
38 GDS3659 ZFPM2 KO 1 1 0 0 
39 GDS3663 GATA4 KO 1 1 1 0 
40 GDS3730 TARDBP KD 1 1 0 0 



41 GDS3732 SRF KO 1 1 1 1 
42 GDS3788 YY1 KD 1 1 1 1 
43 GDS3788 YY2 KD 1 0 0 0 
44 GDS3812 GLIS3 KO 1 1 0 0 
45 GDS3912 CTNNB1 VR 1 1 1 0 
46 GDS3926 HNF4A KD 1 1 1 1 
47 GDS4042 POU4F1 KO 1 1 0 0 
48 GDS4058 SIRT3 KO 1 1 0 0 
49 GDS4061 ESR1 KD 1 1 1 0 
50 GDS4080 GATA3 OE 1 1 1 1 
51 GDS4094 E2F1 KD 1 1 1 1 
52 GDS4094 E2F2 KD 0 1 0 0 
53 GDS4095 NCOA KD 0 0 0 0 
54 GDS4280 BCOR VR 1 1 0 0 
55 GDS4294 RARA KO 1 1 0 0 
56 GDS4302 GFI1B OE 1 0 1 0 
57 GDS4309 EZH2 KD 1 1 1 0 
58 GDS4315 OTT1 KO 0 0 0 0 
59 GDS4315 RBM15 KO 1 0 0 0 
60 GDS4320 PPARB KO 0 0 0 0 
61 GDS4320 PPARD KO 1 1 1 0 
62 GDS4341 MIST1 KD 0 0 0 0 
63 GDS4348 PDX1 KD 1 1 1 0 
64 GDS4370 PPARG KD 1 1 1 0 
65 GDS4373 AIRE KO 1 1 0 0 
66 GDS4386 CTNNB1 KD 1 1 1 0 
67 GDS4388 SIN3A KD 1 1 1 1 
68 GDS4407 CEBPA VR 1 1 1 0 
69 GDS4416 NOD2 VR 1 1 0 0 
70 GDS514 NFE2L2 KO 1 1 1 0 
71 GDS791 ESR2 KO 1 1 1 0 
72 GDS998 TCOF1 KD 1 1 0 0 
73 GDS998 TCOF1 OE 1 1 0 0 

 Table S1 TF perturbation experiment details 

  



 
 

 GEO ID Drug TF present 

on array 

Interacting genes 

present on arrray 

1 GDS1050 valproic acid 1 1 

2 GDS1273 amoxicillin 0 0 

3 GDS1333 oxandrolone 1 1 

4 GDS1334 oxandrolone 1 1 

5 GDS1617 zinc acetate 0 0 

6 GDS1808 glipizide 1 1 

7 GDS1808 rosiglitazone 1 1 

8 GDS1842 ethanol 0 0 

9 GDS1864 levetiracetam 1 1 

10 GDS2021 metoprolol 1 1 

11 GDS2037 isoflurane 1 1 

12 GDS2107 ethanol 1 1 

13 GDS2314 dexamethasone 1 1 

14 GDS2324 estradiol 1 1 

15 GDS2453 rosiglitazone 1 1 

16 GDS2456 dactinomycin 0 0 

17 GDS2494 sirolimus 1 1 

18 GDS2531 clozapine 1 1 

19 GDS2531 haloperidol 1 1 

20 GDS253 methylprednisolone 1 1 

21 GDS2605 niacin 1 1 

22 GDS2608 olanzapine 1 1 

23 GDS2767 ethanol 1 1 

24 GDS2772 propofol 1 1 

25 GDS2772 sevoflurane 1 1 

26 GDS2777 bexarotene 1 1 

27 GDS2802 dexamethasone 1 1 

28 GDS2878 titanium dioxide 0 0 

29 GDS2913 diethylstilbestrol 1 1 

30 GDS2970 chlorambucil 0 0 

31 GDS2983 triclosan 0 0 

32 GDS2998 permethrin 1 0 

33 GDS3002 valproic acid 1 1 

34 GDS3012 decitabine 1 1 

35 GDS3042 imatinib 1 1 

36 GDS3043 imatinib 1 1 

37 GDS3044 imatinib 1 1 

38 GDS3045 imatinib 1 1 

39 GDS3046 imatinib 1 1 

40 GDS3047 imatinib 1 1 

41 GDS3048 imatinib 1 1 

42 GDS3049 imatinib 1 1 

43 GDS3071 hydrocortisone 1 1 

44 GDS3089 tretinoin 1 1 

45 GDS3099 cisplatin 0 0 



46 GDS3101 cisplatin 0 0 

47 GDS3109 sunitinib 1 1 

48 GDS3116 letrozole 1 1 

49 GDS3136 triclosan 0 0 

50 GDS3194 medroxyprogesterone 

acetate 

0 0 

51 GDS3215 isotretinoin 1 1 

52 GDS3217 estradiol 1 1 

53 GDS3218 isotretinoin 1 1 

54 GDS3251 tobramycin 0 0 

55 GDS3283 estradiol 1 1 

56 GDS3315 estradiol 1 1 

57 GDS3369 zinc sulfate 0 0 

58 GDS3396 rosiglitazone 1 1 

59 GDS3514 doxorubicin 1 1 

60 GDS3518 imatinib 1 1 

61 GDS3603 sirolimus 1 1 

62 GDS3619 probucol 1 1 

63 GDS3635 vitamin c 1 1 

64 GDS3656 folic acid 1 0 

65 GDS3703 ethanol 1 1 

66 GDS3703 morphine 1 1 

67 GDS3746 dexamethasone 1 1 

68 GDS3751 clioquinol 0 0 

69 GDS3829 rituximab 1 1 

70 GDS3850 pioglitazone 1 1 

71 GDS3850 rosiglitazone 1 1 

72 GDS3850 troglitazone 1 1 

73 GDS3946 dexamethasone 1 1 

74 GDS4003 cyclophosphamide 0 0 

75 GDS4004 cyclophosphamide 0 0 

76 GDS4005 cyclophosphamide 0 0 

77 GDS4019 pioglitazone 1 1 

78 GDS4036 rosiglitazone 1 1 

79 GDS4047 imatinib 1 1 

80 GDS4052 estradiol 1 1 

81 GDS4078 bexarotene 1 1 

82 GDS4089 bortezomib 1 1 

83 GDS4095 tamoxifen 1 1 

84 GDS4132 pioglitazone 1 1 

85 GDS4171 menadione 1 1 

86 GDS4175 imatinib 1 1 

87 GDS4177 imatinib 1 1 

88 GDS4180 tretinoin 1 1 

89 GDS4272 methotrexate 1 1 

90 GDS4294 tretinoin 1 1 

91 GDS4372 ursodeoxycholic acid 0 0 

92 GDS4391 ribavirin 1 1 

93 GDS4413 pioglitazone 1 1 



94 GDS734 troglitazone 1 1 

95 GDS838 imatinib 1 1 

96 GDS964 methylprednisolone 1 1 

97 GDS965 methylprednisolone 1 1 

98 GDS972 methylprednisolone 1 1 

99 GDS982 diethylstilbestrol 1 1 

100 GSE10433 isotretinoin 1 1 

101 GSE1063 vitamin e 0 0 

102 GSE11343 rosiglitazone 1 1 

103 GSE11352 estradiol 1 1 

104 GSE11440 methotrexate 1 1 

105 GSE11919 vitamin c 1 1 

106 GSE12972 doxorubicin 1 1 

107 GSE16683 estradiol 1 1 

108 GSE1839 estradiol 1 1 

109 GSE19136 paclitaxel 1 1 

110 GSE21266 ursodeoxycholic acid 0 0 

111 GSE21329 pioglitazone 1 1 

112 GSE2251 estradiol 1 1 

113 GSE2354 amoxicillin 0 0 

114 GSE23725 menadione 1 1 

115 GSE2547 olanzapine 1 1 

116 GSE32962 prednisolone 1 1 

117 GSE3311 ethanol 1 1 

118 GSE33455 docetaxel 1 1 

119 GSE37676 vitamin c 1 1 

120 GSE4668 estradiol 1 1 

121 GSE5007 tretinoin 1 1 

122 GSE5462 letrozole 1 1 

123 GSE6206 cisplatin 0 0 

124 GSE6410 cisplatin 0 0 

125 GSE6467 clozapine 1 1 

126 GSE6511 clozapine 1 1 

127 GSE6914 gemcitabine 1 1 

128 GSE7114 cyclophosphamide 0 0 

129 GSE9166 trovafloxacin 0 0 

130 GSE9412 methotrexate 1 1 

 Table S2. Drug perturbation experiment details (S-2) 

  



 

 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 0.320031 0.949913 0.950498 

t test 0.320031 1 0.720549 0.437619 

SAM 0.949913 0.720549 1 0.721472 

Fold 

Change 

0.950498 0.437619 0.721472 1 

Table S3. TF perturbations: TF rankings CDF  

 

 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 0.001237 0.014379 7.98E-10 

t test 0.001237 1 0.89801 0.004785 

SAM 0.014379 0.89801 1 0.000929 

Fold 

Change 

7.98E-10 0.004785 0.000929 1 

Table S4. TF perturbations: Interactor rankings CDF 

 

 

 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 0 0 0 

t test 0 1 0.1333 0 

SAM 0 0.1333 1 0 

Fold 

Change 

0 0 0 1 

Table S5. TF perturbations: ChEA binding site associated gene rankings CDF 

 

 

  



 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 0 0 0 

t test 0 1 0.86352 2.77E-10 

SAM 0 0.86352 1 2E-12 

Fold 

Change 

0 2.77E-10 2E-12 1 

Table S6. TF perturbations: Encode binding site associated gene rankings CDF  

 

 

 

 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 0.179765 0.130491 0.013079 

t test 0.179765 1 0.999625 0.050509 

SAM 0.130491 0.999625 1 0.041362 

Fold 

Change 

0.013079 0.050509 0.041362 1 

Table S7. Drug perturbations: Drug target rankings CDF 

 

 

 

 

 

 Ch.Dir t test SAM Fold 

Change 

Ch.Dir 1 6.48E-11 1.19E-09 0 

t test 6.48E-11 1 0.794584 1.31E-08 

SAM 1.19E-09 0.794584 1 1.63E-08 

Fold 

Change 

0 1.31E-08 1.63E-08 1 

Table S8. Drug perturbations: Drug target interactor rankings CDF  
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